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Abstract 

In developing a software  system,  we  would like to estimate the 
total number  of  faults  inserted  into  that  system,  its  residual  fault  content 
at  any  given time, and the efficacy  of the testing activity in executing 
the code containing the newly  inserted  faults.  Prior to test, however, 
there may  be  very little direct  information  regarding the number  and 
location  of  faults.  This  lack  of  direct  information  requires the devel- 
opment  of a fault  surrogate  from  which the number  of faults and their 
location can be estimated. We develop a fault  surrogate  based on 
changes  in  relative  complexity, a synthetic  measure  which  has  been 
successfully  used as a fault  surrogate  in  previous  work.  We  show  that 
changes  in the relative  complexity  can be used to estimate the rates  at 
which faults are inserted  into a system  between  successive  revisions. 
These  rates  can be used  to  continuously  monitor the total  number  of 
faults inserted  into a system.  Finally, we develop a method  for deter- 
mining  test  effectiveness  based  on  measuring the proportion  of testing 
activity  devoted  to  exercising those areas of the system  that  have 
changed  since the last  version. 

1 Introduction 

Over a number  of  years  of  study,  we  can  now  establish a dis- 
tinct  relationship  between  software  faults  and  certain  aspects  of soft- 
ware complexity.  When a software  system  consisting  of  many  distinct 
software modules  is  built  for the first  time,  we  have little or  no  direct 
information as to the location  of  faults  in the code. Some of the mod- 
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ules will  have  far  more  faults in them  than  others.  We  now,  however, 
know  that the number  of  faults  in a module is highly  correlated  with 
certain software  attributes  that  can be measured.  This  means  that we 
can measure the software on these specific attributes and  have  some 
reasonable notion as to the degree to  which the modules  are  fault  prone 
[9,131. 

In the absence  of  information as to the specific location  of 
software faults, we have  successfully  used a derived  metric, the relative 
complexity  measure, as a fault  surrogate.  That  is,  if the relative com- 
plexity value of a module is large,  then  it  will likely have a large  num- 
ber of  latent  faults. If, on the other  hand, the relative complexity  of a 
module is small,  then  it  will  tend  to  have  fewer  faults. As the software 
system  evolves  through a number of sequential  builds,  faults  will be 
identified  and the code  will  be  changed in an  attempt to eliminate the 
identified faults. The  introduction  of  new code however, is a fault 
prone process just as the initial  code  generation  was.  Faults  may  well 
be injected during this evolutionary  process. 

Code does  not  always  change just to fix faults that  have  been 
isolated in it.  Some  changes  to  code  during  its  evolution  represent  en- 
hancements,  design  modifications, or changes in the code in response 
to continually  evolving  requirements.  These  incremental code en- 
hancements  may  also  result  in the insertion  of still more  faults.  Thus, 
as a system  progresses  through a series of builds, the relative  complex- 
ity fault  surrogate  of  each  program  module  that  has  been  altered  must 
also change.  We  will see that the rate  of  change in relative  complexity 
will  serve as a good  index  of the rate of  fault  insertion. 

Once the rate of  fault  insertion  has  been  established,  it  becomes 
possible to estimate the number of faults  remaining in the system  at any 
point  during the development.  Since  we  use  changes  in relative com- 
plexity as an  index  of the fault  insertion  rate,  it  becomes  possible to 
estimate the number  of  residual  faults  at the module level, in  which a 
module is taken to  be a procedure,  function,  or  method.  This  informa- 
tion is useful  to  software  development  managers  wishing  to estimate 
the resources  required to remove the remaining faults - not  only can the 
number  of  remaining  faults be estimated,  but  it is possible to direct 
fault  detection  and  removal  resources  at those portions of the software 
estimated to have the highest  concentrations  of  residual  faults.  How- 
ever, this is only  half  of the picture.  Once the software is operating in 



the field, we  wish  to  estimate  its  reliability.  The  estimated  number  of 
residual  faults, a static measure,  must be transformed  into an estimate 
of the system’s  dynamic  behavior. 

The general  notion of software  test  is  that  rate  of  fault  removal 
will generally  exceed the rate of  fault  insertion.  In  most  cases, this is 
probably true [ 151. Some  changes are rather  more  heroic  than others. 
During these more substantive  change  cycles,  it is quite possible that 
the actual  number  of  faults  in the system  will rise. We  would be very 
mistaken, then, to  assume  that  software  test  will  monotonically reduce 
the number  of faults in a system. This will only be the case when the 
rate  of  fault  removal  exceeds the rate  of  fault  insertion. The rate of 
fault  removal is relatively  easy  to  measure.  The  rate  of  fault  insertion 
is much  more  tenuous.  This  fault  insertion  process  is directly related to 
two measures  that we can  take  on  code  as  it  evolves, code change  and 
code churn. 

In this investigation  we  will  establish a methodology  whereby 
code can be measured  from  one  build  to the next, a measurement  base- 
line. We  will  use this measurement  baseline  to  develop an assessment 
of the rate of  change to a system as measured  by  our relative complex- 
ity fault  surrogate.  From this change  process  we  will then be able to 
derive a direct  measure of the rate of  fault  insertion  based on changes in 
the software  from one build to the next.  We  examine  data  from an ac- 
tual system on which  faults  may be traced  to  specific  build  increments 
to  assess the predicted  rate  of  fault  insertion  with the actual. Finally, 
we will  develop a method  of  measuring the efficiency  of a test activity. 

To estimate  rates  of  fault  insertion,  it is necessary  to  identify a 
complete software  system on which  every  version  of every module  has 
been archwed together  with the faults that  have  been  recorded  against 
the system  as  it  evolved. Of the two  systems  we  analyzed for this 
study, the Cassini  Orbiter  Command  and  Data  Subsystem  at JPL met 
all of  our  objectives.  On the first  build  of  this  system there were ap- 
proximately 96K source  lines  of  code  in  approximately  750  program 
modules.  On the last  build there were  approximately 1 10K lines of 
source code in approximately 800 program  modules. As the system 
progressed  from the first  to the last  build there were a total of 45,200 
different  versions  of these modules.  On the average, then, each module 
progressed  through  an  average  of 56 evolutionary  steps  or  versions. 
For the purposes  of this study, the Ada  program  module is a procedure 



or function.  It is the smallest  unit  of the Ada  language structure that 
may  be  measured. A number  of  modules  present in the first  build  of 
the system  were  removed on subsequent  builds.  Similarly, a number  of 
modules  were  added. 

The Cassini  CDS  does  not  represent  an  extraordinary software 
system. It is quite typical  of the amount  of  change  activity  that  will 
occur in the development of a system on the order  of  100  KLOC.  It  is a 
non-trivial  measurement  problem to track the system as it  evolves. 
Again, there are two  different  sets of measurement  activities  that  must 
occur at once. We are interested in the changes  in the source code and 
we are interested in the fault  reports  that are being  filed  against each 
module. 

To  determine the efficiency  of a test  activity,  it is necessary to 
have a system  in  which  structural  changes  between  one  increment  and 
its predecessor  can be measured  together  with the execution profile ob- 
served during test. Since  we  were  unable  to  accomplish this for the 
CASSINI  CDS  flight  software,  we  studied the real-time  software for a 
commercial  embedded  system. 

2 A Measurement Baseline 

The  measurement  of an evolving  software  system  through the 
shifting sands  of time is not  an  easy  task.  Perhaps  one  of the most dif- 
ficult  issues  relates to the establishment  of a baseline  against  which the 
evolving systems may  be  compared.  This  problem is very similar to 
that  encountered  by the surveying  profession.  If  we  were  to  buy a 
piece of  property, there are certain  physical  attributes  that we would 
like to know  about.  Among  these  properties is the topology  of the site. 
To establish the topological  characteristics  of the land,  we  will  have to 
seek out a benchmark. This benchmark  represents an arbitrary  point 
somewhere on the subject  property. The distance  and the elevation of 
every other point on the property  may  then  be  established in relation to 
the measurement  baseline.  Interestingly  enough, we can pick any point 
on  the property,  establish a new  baseline,  and  get  exactly the same to- 
pology for the property.  The  property  does  not  change.  Only our per- 
spective changes. 

When  measuring  software  evolution,  we  need  to  establish a 
measurement baseline for the same purpose  described  above [ 17,141. 



We  need a fixed  point  against  which  all  others can be compared.  Our 
measurement  baseline  also  needs  to  maintain the property so that,  when 
another  point is chosen, the exact  same picture of  software  evolution 
emerges;  only the perspective  changes.  The  individual  points  involved 
in measuring  software  evolution are individual  builds  of the system. 

Standardizing  metrics  for one particular  build is simple.  For 
each metric  obtained  for each module,  subtract  from  that  metric its 
mean  and  divide  by  its  standard  deviation.  This  puts  all  of the metrics 
on the same relative scale, with a mean  of  zero  and a standard  deviation 
of one. This  works  fine for comparing  modules  within one particular 
build.  But  when  we  standardize  subsequent  builds  using the means and 
standard  deviations  for those builds a problem arises. The standardiza- 
tion masks the change  that  has  occurred  between  builds. In order to 
place all the metrics on the same  relative scale and  to  keep  from losing 
the effect  of  changes  between  builds,  all  build  data is standardized us- 
ing the means  and  standard  deviations  for the metrics  obtained  from the 
baseline  system. This preserves trends in the data and lets  measure- 
ments  from  different  builds  be  compared. 

For  each  raw  metric  in the baseline  build, we may compute a 
mean and a standard  deviation.  Let us denote the vector  of  mean val- 
ues for the baseline  build as Z6 and the vector of standard  deviations 
as s6 . The standardized  baseline  metric  values  for  any  module j in an 
arbitrary build i, then,  may  be  derived  from  raw  metric  values as 

W ~ , ~  - 2 8,) 
Z R . i  - I - 

I B d  

The process  of  standardizing the raw  metrics  certainly  makes 
them  more  tractable.  Among  other  things,  it  now  permits the compari- 
son  of  metric  values  from one build  to the next.  This  standardization 
does not  solve the main  problem.  There are too  many  metrics collected 
on each  module  over  many  builds.  We  need  to  reduce the dimension- 
ality of the problem.  We  have  successfully  used  principal  components 
analysis  for  reducing the dimensionality  of the problem [ 10,7]. The 
principal  components  technique  will reduce a set  of highly correlated 
metrics to a much  smaller  set  of  uncorrelated  or  orthogonal  measures. 
One of the products  of the principal  components technique is an or- 
thogonal  transformation  matrix T that  will  send the standardized scores 
(the matrix z) onto a reduced  set  of  domain  scores  thusly, d = zT . 



In the same  manner as the baseline  means  and  standard  devia- 
tions  were  used  to  transform the raw  metric of any build relative to a 
baseline build, the transformation  matrix T B  derived  from the baseline 
build  will be used in subsequent  builds  to  transform  standardized met- 
ric values  obtained  from  that  build  to the reduced  set  of  domain  metrics 
as follows: dB,‘ = zB.’ T B  , where zB.j are the standardized  metric Val- 
ues  from  build i baselined  on  build B . 

Another  artifact  of the principal  components  analysis is the set 
of  eigenvalues  that are generated  for each of the new  principal  compo- 
nents.  Associated  with  each  of the new  measurement  domains is an 
eigenvalue, h . These  eigenvalues are large or  small  varying directly 
with the proportion  of  variance  explained  by  each  principal  component. 
We  have  successfully  exploited  these  eigenvalues  to  create a new  met- 
ric called  relative  complexity, p , that is the weighted  sum  of the do- 
main  metrics to wit: 

m 
pi = 50 + 1 0 C k j d j  , 

j=l 

where m is the dimensionality  of the reduced  metric  set [ 101. 
As was the case for the standardized  metrics  and the domain 

metrics, relative complexity  may  be  baselined as well  using the eigen- 
values and the baselined  domain  values as follows: 

m 

p,! =Chyd,B 
j= l  

If the raw  metrics  that are used  to  construct the relative  com- 
plexity metric are carefully  chosen  for  their  relationship to software 
faults, then the relative complexity  metric  will  vary in exactly the same 
manner as the faults [ 121. The relative  complexity  metric in this con- 
text is a fault  surrogate.  Whereas  we  cannot  measure the faults in a 
program  directly we can measure the relative  complexity of the pro- 
gram  modules  that  contain the faults. Those modules  having a large 
relative complexity  value  will  ultimately be found  to be those  with the 
largest  number  of  faults [ 1 11. 

3 Software Evolution 



As a software  system  grows  and  modifications are made, the 
modules  that  comprise the system are recompiled  and a new  version, or 
build,  is  created.  Each  build is constructed  from a distinct  set  of these 
software  modules,  though  not  always  exactly the same  ones. The new 
version  may  contain  some  of the same  modules as the previous  version. 
Some entirely new  modules  may  even  omit some modules  that were 
present  in an earlier  version. Of the modules  that  are  common to both 
the old and  new  version,  some  may  have  undergone  modification since 
the last  build. The set  of  modules  that constitute the system on any one 
build is subject to material  change  over the life of the system. 

3.1 Module Sets and Versions 

When  evaluating the change  that  occurs to the system  between 
any two builds i, andj, we are interested in three sets of modules. The 
first set, M:,' , is the set  of  modules  present  in  both  builds  of the sys- 
tem.  These  modules  may  have  changed since the earlier version  but 
were  not  removed. The second  set, M y ,  is the set  of  modules that 
were in the early  build  and  were  removed  prior  to the later build. The 
final  set, M Y  , is the set  of  modules  that  have  been  added  to the system 
since the earlier  build. 

As an  example,  let  build i consist of the following  set  of  mod- 
ules. 

. .  

M'  = (m,,m,,m3,m4,m,) 
Between  build i andj module m3 is removed  giving 

M j  =" u ~ : J  -M;J 

= i  

= I  - m1,"4,ms,m,,m8 i 

. .  

m l , m 2 9 m 3 9 m 4  m 5 > u (  } - { m 3 )  
= ml,m2rm4,m53 

Then between  builds j and k two  new  modules, m7 and m, are added 

and  module m2 is deleted  giving 
~k = M j  uMi.k -Mi.k 

- m,,m, ,m, ,m,)u  m,?m*)-{mJ 

With a suitable  baseline  in  place,  and the module sets defined 
above,  it is now  possible  to  measure  software  evolution  across a fbll 
spectrum  of  software metria. We  can  do this first  by  comparing aver- 



age metric  values  for the different builds. Secondly,  we  can  measure 
the increase or  decrease  in  system  complexity  as  measured  by the code 
delta, or  we can measure the total  amount  of  change the system  has  un- 
dergone between  builds, code churn. 

We can now  see  that  establishing the complexity  of  a  system 
across  builds  in the face of  changing  modules and changing sets of 
modules is in itself  a  very  complex  problem.  In  terms  of the example 
above, the relative  complexity  of the system RB5' at  build i, the early 
build, is given  by 

where p,"" is the relative  complexity  of  module m, on this build base- 
lined  by  build B. 
Similarly, the relative  complexity  of the system R B ~ j  at buildj, the latter 
build is given  by 

m,EM' 

The later  system  build is said to be more  complex  if R". ' > R R , '  . Re- 
gardless of  which metric is chosen, the goal is the same. We  wish  to 
assess how the system  has  changed  over time with  respect to that par- 
ticular measurement. The concept  of  a  code  delta  provides this infor- 
mation. A code delta is, as the name  implies, the difference  between 
two builds as to the relative  complexity  metric. 

3.2 Code  Churn  and  Code  Deltas 

The change  in the relative  complexity in a  single  module be- 
tween two  builds  may be measured  in  one  of  two  distinct  ways.  First, 
we may  simply  compute the difference in the module  relative  com- 
plexity between  build i and  build j .  We  will  call this value the code 
delta for the module m, , or 6 : j  = p,B" - pf,' . The absolute  value  of 
the code delta is a  measure  of code churn.  In the case of code churn, 
what is important is the absolute measure  of the nature that code has 
been modified.  From the standpoint  of  fault  insertion,  removing  a  lot 
of code is probably as catastrophic as adding  a  bunch. The new meas- 



ure of code chum, x , for  module m, is simply 
x ; ~  . .  =16;/l=lp;.j . .  - 

P,".'I . 
It is now  possible  to  compute the total change  activity  for the 

aggregate  system  across  all  of the program  modules. The total  net 
change  of the system is the sum  of the code delta's for a system  be- 
tween two builds i andj is  given  by 

With a suitable  baseline  in  place,  and the module sets defined 
above, it is now  possible  to  measure  software  evolution  across a full 
spectrum  of  software  metrics.  We  can  do this first  by  comparing aver- 
age metric  values  for the different  builds.  Secondly,  we can measure 
the increase or decrease  in  system  complexity  as  measured  by a se- 
lected  metric, code delta,  or  we  can  measure the total  amount  of change 
the system  has  undergone  between  builds, code churn. 

A limitation  of  measuring code deltas is that  it  doesn't  give an 
indicator as to how  much  change the system  has  undergone. If, be- 
tween  builds,  several  software  modules are removed  and are replaced 
by  modules  of  roughly  equivalent  complexity, the code delta for the 
system  will be close to  zero. The overall  complexity  of the system, 
based on the metric  used  to  compute deltas, will  not  have  changed 
much.  However, the reliability  of the system  could  have  been  severely 
affected  by the process  of  replacing  old  modules  with  new  ones.  What 
we  need is a measure to accompany  code  delta  that indicates how  much 
change has  occurred.  Code  churn  is a measurement,  calculated in a 
similar manner to code delta,  that  provides this information. The net 
code chum of the same system  over  the  same  builds is 

When  several  modules are replaced  between  builds by modules 
of  roughly the same  complexity, code delta  will be approximately  zero 
but code chum will  be  equal  to the sum of the value  of p for all of the 
modules,  both  inserted  and  deleted.  Both the code delta  and code chum 
for a particular  metric are needed to assess the evolution  of a system. 

4 Obtaining  Average  Build  Values 



One synthetic  software  measure,  relative  complexity,  has 
clearly been  established as a successful  surrogate  measure  of software 
faults [ 101. It  seems  only  reasonable  that we should use it as the meas- 
ure against  which  we  compare  different  builds. Since relative  corn- 
plexity is a composite  measure  based on the raw  measurements,  it  in- 
corporates the information  represented  by LOC, Y o ,  q l ,  q 2 ,  and  all 
the other  raw  metrics  of  interest.  Relative  complexity is a single value 
that is representative  of the complexity  of  the  system  which  incorpo- 
rates all of the complexity  attributes  we  have  measured (e.g., size, 
control flow, style, data  structures,  etc.). 

By  definition, the average  relative  complexity, p , of the base- 
line system will be 

where N B  is the cardinality  of the set  of  modules on build B, the base- 
line build.  Relative  complexity  for the baseline  build is calculated  from 
standardized  values  using the mean  and  standard  deviation  from the 
baseline metrics.  The  relative  complexities  are  then  scaled to have a 
mean of 50 and a standard  deviation of 10. For  that  reason, the average 
relative complexity  for the baseline  system  will  always be a fixed  point. 
Subsequent  builds are standardized  using the means  and  standard de- 
viations  of the metrics  gathered  from the baseline  system  to allow corn- 
parisons. The average  relative  complexity  for  subsequent  builds is 
given by 

where N k  is the cardinality of  the  set  of  program  modules  in the kfh 
build  and p:,‘ is the baselined  relative  complexity for the i fh module 
of  that set. 

The total relative  complexity, Ro , of a system  on its initial 
build is simply the sum  of all relative  complexities  of  each  module  of 
the initial system, 

N 

R ’ = Z p ,  0 . 
i=l 



The principle  behind  relative  complexity is that  it  serves  as a 
fault  surrogate.  That is, it  will  vary in precisely the same  manner as do 
software faults. The fault  potential r: of a particular module i is di- 
rectly  proportional  to its value  of the relative  complexity  fault surro- 
gate. Thus, 

To derive a preliminary  estimate  for the actual  number  of faults 
per  module  we  may  make judicious use of historical data. From previ- 
ous  software  development  projects  it is possible  to  develop a propor- 
tionality constant, say k, that  will  allow the total  system relative com- 
plexity to  map  to a specific  system  fault  count as follows: Fa = kRo or 
Ro = k f  F 0  . Substituting for R in the previous  equation,  we  find  that 

Thus, our best  estimate  for the number  of  faults in module i in the ini- 
tial  configuration  of the system is 

g P = r i F  . 
After  an  interval  of testing a number  of  faults  will be found and 

fixes  made to the code to  remedy the faults. Let F j  be the total  num- 
ber of faults found in the total  system up to and  including the j f h  build 
of the software. In a particular  module i there will be f , '  faults found 
in the first  build  that are attributable  to this module.  The  estimated 
number  of  faults  remaining in module i will  then be 

0 0  

gt = go - f '  
1 1 1 ,  

assuming  that  we  have  only  fixed  faults  in the code and not  added any 
new ones. 

Our  ability  to  locate the remaining  faults in a system  will relate 
directly to our exposure  to these faults.  If, for example,  at the j f h  build 
of a system there are g,! remaining faults in  module i , we can not ex- 
pect  to  identify  any  of  these  faults  unless  some  test  activity is allocated 
to exercising  module i. 

As the code is modified  over  time,  faults  will  be  found  and 
fixed. However,  new  faults  will  be  introduced  into the code as a result 
of the change. In fact,  this  fault  insertion  process is directly propor- 



tional to  change in the program  modules  from  one  version to the next. 
As a module is changed  from  one  build  to the next  in  response to 
evolving  requirements  changes  and  fault  reports, its complexity  will 
also change. Generally, the net  effect  of a change is that  complexity 
will increase.  Only  rarely  will its complexity  decrease. It is now  nec- 
essary to describe the measurement  process  for the rate  of  change in an 
evolving  system. 

5 Software  Evolution and the  Fault  Insertion  Process 

Initially,  our  best  estimate  for the number  of  faults in module i 
in the initial  configuration  of the system is 

gP=q F . 0 0  

As the i'h module  was  tested  during the test  activity  of the first  build, 
the number  of faults found  and  fixed  in this process  was  denoted  by 
f i '  . However,  in the process  of fixing this  fault, the source code will 
change. In all likelihood, so, too,  will the relative  complexity  of this 
module.  Over a sequence  of  builds, the complexity  of this module  may 
change substantially.  Let, 

i 
AY = 

k=l 

represent the net  change  in  relative  complexity  to the i fh module over 
the first j builds. Then the cumulative  churn  in the total  system  over 
thesej builds  will be, 

N ,  v0.i = cvp3i , 

where N ,  is the cardinality  of the set  of  all  modules  that  were in exis- 

tence over these j builds.  The  complexity  of the ith module  will have 
changed over this sequence of builds.  Its  new  value  will  be pi +A:,'. 
Some changes may increase the relative complexity of this module and 
others may  decrease  it. A much  better  (as  will be demonstrated)  meas- 
ure of the cumulative change to the system  will be p i  + VS-j. The sys- 
tem  complexity, R, will  also  have  changed.  Its  new value will be 

r = l  

RO + A0.J 



On the initial  build  of the system the initial burden  of faults in a 
module  was  proportional  to the relative  complexity  of the module.  As 
the build cycle continues, the rate of fault  insertion is most closely as- 
sociated  with the code churn. Thus, the proportion  of faults in the i" 
module will  have  changed  over the sequence o f j  builds,  related to its 
initial relative  complexity  and  its  subsequent code churn. Its  new 
value will be 

We  now  observe  that  our  estimate  of the number  of faults in 
the system  has  now  changed. On the j" build there will  no  longer be 
F o  faults in the system.  New  faults  will  have  been  introduced  as the 
code has  evolved.  In all likelihood, the initial  software  development 
process  and  subsequent  evolution  processes  will be materially  different. 
This means  that there will be a different  proportionality  constant,  say 
k' , representing the rate of  fault  insertion  for the evolving  system.  For 
the total system,  then, there will  have  been F' = kRo + k'Aoo.' faults in- 
troduced  into the system  from the initial  build  through the j f h  build. 
Each  module  will  have  had h/ = q J F J  faults introduced in it  either  from 
the initial  build  or on subsequent  builds.  Thus, our revised estimate of 
the number  of  faults  remaining  in  module i on buildj will be 

g /  = h,! -A,'. 
The rate  of  fault  insertion is directly  related to the change ac- 

tivity that a module  will  receive  from one build  to the next.  At the 
system  level,  we can see that the expected  number of injected faults 
from buildj to buildj+l will be 

FJ+' -FJ =kR' +k'V'.J'' -kRQ +kfV'.J 
= kf(vo.J+l - VOJ) 
- - kfVj.'+1 

At the module  level, the rate of  fault  insertion  will again be propor- 
tional to the level  of  change activity. Hence, the expected  number  of 
injected faults between buildj to buildj+l on module i will be simply 
A/+[ - h; . 

The two  proportionality  constants k and k' are the ultimate cri- 
terion  measures of the software development  process and software 
maintenance  processes.  Each  process  has an associated  fault insertion 



proportionality  constant.  If  we  institute a new software  development 
process  and  observe a significant  change  downward  in the constant k, 
then the change  would  have  been a good  one.  Very  frequently,  how- 
ever, software processes are changed  because  development  fads change 
and not  because a criterion  measure  has  indicated that a new  process is 
superior to a previous  one.  We  will  consider  that an advance in soft- 
ware development  process  has  occurred  if  either k or k' has  diminished 
for that new  process. 

6 Definition of a  Fault 

Unfortunately there is  no  particular  definition  of just precisely 
what a software fault  is.  In the face of  this  difficulty  it is rather  hard to 
develop meaningful  associative  models  between  faults  and  metrics. In 
calibrating our  model,  we  would  like  to  know  how to count faults in an 
accurate and  repeatable  manner.  In  measuring the evolution  of the 
system  to talk about  rates  of  fault  introduction  and  removal,  we  meas- 
ure in  units to the way  that the system  changes  over  time.  Changes to 
the system are visible  at the module  level,  and  we  attempt  to measure at 
that level of granularity.  Since the measurements  of  system structure 
are collected  at the module  level  (by  module we mean  procedures  and 
functions), we would like information  about  faults  at the same granu- 
larity.  We  would  also like to  know  if  there are quantities that are re- 
lated to  fault  counts  that can be used  to  make  our  calibration  task eas- 
ier. 

Following the second  definition  of  fault in [3,4],  we  consider a 
fault to be a structural  imperfection in a software  system  that may 
lead to the system's  eventually  failing. In other  words,  it is a physical 
characteristic of the system  of  which the type  and  extent  may be 
measured using the same ideas  used to measure the properties  of more 
traditional physical  systems.  Faults are introduced  into a system  by 
people  making  errors  in  their  tasks - these  errors  may  be  errors of 
commission  or  errors  of  omission. 

In order to count  faults,  we  needed  to  develop a method  of 
identification that is repeatable,  consistent,  and  identifies faults at the 
same level  of  granularity as our  structural  measurements.  In analyzing 
the flight software for the CASSINI  project the fault  data  and the 
source code change  data  were  available  from  two  different systems. 



The  problem  reporting  information was obtained  from the JPL institu- 
tional  problem  reporting  system.  For the software  used in this study, 
failures  were  recorded  in this system  starting  at  subsystem-level  inte- 
gration,  and  continuing  through  spacecraft  integration  and test. Failure 
reports  typically  contain  descriptions  of the failure  at  varying  levels of 
detail, as  well as descriptions  of  what  was  done  to  correct the fault(s) 
that  caused the failure.  Detailed  information  regarding the underlying 
faults (e.g., where  were the code changes  made in each affected  mod- 
ule) is generally  unavailable  from the problem  reporting  system. 

The entire source code evolution  could  be  obtained  directly 
from the Software  Configuration  Control  System  (SCCS) files for all 
versions of the flight  software. The way  in  which  SCCS  was  used in 
this development  effort  makes it possible to track  changes to the system 
at a module  level in that  each  SCCS  file  stores the baseline version  of 
that file (which  may  contain one or more modules) as well as the 
changes  required to produce  each  subsequent  increment  (SCCS delta) 
of that file.  When a module  was  created,  or  changed in response to a 
failure  report  or  engineering  change  request, the file in which the mod- 
ule is contained  was  checked  into  SCCS as a new  delta. This allowed 
us to track  changes to the system  at the module  level as it evolved  over 
time.  For  approximately  10%  of the failure reports, we were able to 
identify the source file increment in which the fault(s)  associated with a 
particular  failure  report  were  repaired.  This  information  was available 
either in the comments  inserted  by the developer  into the SCCS file as 
part  of the check-in  process, or as part  of the set  of  comments  at the 
beginning  of a module  that  track  its  development  history. 

Using the information  described  above,  we  performed the fol- 
lowing steps  to  identify  faults: 

For  each  problem  report,  search  all  of the SCCS files to  iden- 
tify all modules  and the increment(s)  of  each  module  for which 
the software  was  changed in response to the problem  report. 
For  each  increment of each module  identified in Step 1 ,  start 
with the assumption  that all differences  between the increment 
in which  repairs are implemented  and the previous  increment 
are due  solely  to  fault  repair.  Note  that this is not  necessarily a 
valid  assumption - developers  may be making  functional en- 
hancements  to the system in the same increment that fault re- 
pairs are being  made.  Careful  analysis  of failure reports for 



which there was  sufficiently  detailed  descriptive  information 
served  to  separate areas of  fault  repair  from  other  changes. 
However, the level  of  detail  required to perform this analysis 
was  not  consistently  available. 

0 Use a differential  comparator  (e.g.:  Unix dif  f )  to  obtain the 
differences  between the increment(s)  in  which the fault(s)  were 
repaired,  and the immediately  preceding  increment(s). The re- 
sults indicated the areas  to be searched  for  faults. 
After  completing the last  step,  we  still  had to identify and  count 

the faults - the results  of the differential  comparison  cannot  simply  be 
counted  up to give a total  number of faults.  In  order to do this,  we de- 
veloped a taxonomy  for  identifying  and  counting faults [Niko98].  This 
taxonomy differs  from  others in that  it  does  not  seek  to identify the root 
cause of the fault. Rather,  it is based  on the types  of  changes  made to 
the software to repair the faults  associated  with  failure  reports - in other 
words,  it constitutes an  operational  definition  of a fault.  Although 
identifying the root  causes  of  faults is important  in  improving the de- 
velopment  process [ l ,  51, it is first  necessary to identify the faults. We 
do not  claim  that  this is the only  way to identify  and  count faults, nor 
do we claim  that  this  taxonomy  is  complete.  However,  we  found  that 
this taxonomy  allowed us to  successfully identify faults in the software 
used in the study  in a consistent  manner  at the appropriate  level  of 
granularity. 

7 The Relationship Between  Faults  And  Code Changes 

Having established a theoretical  relationship  between software 
faults and code changes,  it is now  of  interest  to  validate  this  model em- 
pirically. This measurement  occurred on two  simultaneous fronts. 
First, all  of the versions  of  all  of the source  code  modules  were meas- 
ured. From these measurements, code churn  and code deltas were ob- 
tained for  every  version  of  every  module. The failure  reports  were 
sampled to lead  to specific faults  in the code.  These  faults  were classi- 
fied according to the above  taxonomy  manually on a case by case basis. 
Then we  were able to  build a regression  model  relating the code meas- 
ures to the code faults. 

The Ada  source  code  modules for all  versions  of  each  of these 
modules were systematically  reconstructed  from the SCCS code deltas. 



Each  of  these  module  versions  was  then  measured  by the UX-Metric 
analysis  tool for Ada [ 191. Not all metrics  provided  by this tool were 
used in this study.  Only  a  subset of these actually provide distinct 
sources of variation [6]. The  specific  metrics  used in this study are 
shown in Table 1. 

Table 1. SoRware  Metric  Definitions 

Metrics  Definition 

r l l  

r l 2  

Count of unique  operators [2] 

Count of unique  operands 
Count of total  operators 

Count of total  operands 
N ,  

N2 
p’R 

McCabe’s  cyclomatic  complexity V(g) 

Purity  ratio: ratio of Halstead’s f i  to total  program  vocabulary 

Depth 
Average  nesting  level of program  blocks AveDepth 

Maximum  nesting  level of program  blocks 

Count of executable  statements Stm ts 

Total  words used in  all  comments CmtWds 

Count of comments Cmt 

Number of blank  lines Blk 

Number of lines of code LOC 

LSS 

Number of physical  source  statements PSS 

Number of logical  source  statements 

NonEx 

Average  number of lines of code  between  references  to  each AveSpan 

Number of non-executable  statements 

variable 
VI Average  variable  name length 

To establish  a  baseline  system,  all of the metric  data  for the 
module  versions  that  were  members  of the first  build  of CDS were then 



analyzed  by our PCA-RCM  tool.  This  tool is designed  to  compute 
relative complexity  values  either  from a baseline  system  or  from a sys- 
tem being  compared to the baseline  system.  In  that the first  build  of 
the Cassini  CDS  system  was  selected to be the baseline  system, the 
PCA-RCM  tool  performed a principal  components  analysis on these 
data with an orthogonal  varimax  rotation. The objective  of this phase 
of the analysis is to  use the principal  components  technique to reduce 
the dimensionality of the metric  set. 

Table 2. Principal  Components of Software  Metrics 



Metric Nesting Style Structure Sue 

%Variance 6.009  10.454  30.315  37.956 

As may been  seen in Table 2, there are four  principal  compo- 
nents for the 18 metrics  shown in Table 1. For  convenience, we have 
chosen to  name these principal  components  as Size,  Structure,  Style 
and Nesting. From the last  row  in Table 2 we can see that the new re- 
duced  set of orthogonal  components  of the original 18 metrics  account 
for approximately 85% of the variation  in the original  metric set. 

As is typical in the  principal  components  analysis  of  metric 
data, the Size domain  dominates the analysis.  It alone accounts  for ap- 
proximately 38% of the total  variation in the original metric set.  Not 
surprisingly, this domain  contains the metrics of total  statement  count 
(Stmts), logical  source  statements (LSS), the Halstead lexical metric 
primitives  of  operator  and  operand  count,  but  it  also  contains cyclo- 
matic  complexity (V(g)). In that  we  regularly  find  cyclomatic com- 
plexity in this domain  we are forced  to  conclude  that  it is only a simple 
measure  of  size  in the same  manner  as  statement  count. The Struc- 
ture domain  contain those metrics  relating  to the physical structure of 
the program  such  as  non-executable  statements (NonEx) and the pro- 
gram  block  count (Blk). The Style domain  contains  measures  of at- 
tribute that are directly under a programmer’s  control such as variable 
length (VZ) and  purity  ratio (P/R). The Nesting domain  consist  of the 
single metric that is a measure  of the average depth  of  nesting of pro- 
gram  modules (AveDepth). 

In  order to transform the raw  metrics  for  each module version 
into their corresponding relative complexity  values, the means and the 
standard  deviations  must be computed. These are  shown  in Table 3. 
These values  will be used  to  transform  all  raw  metric  values  for  all  ver- 
sions  of  all  modules  to  their  baselined z score  values. The last  four col- 
umns of Table 3 contain the actual  transformation  matrix  that  will map 
the metric z score  values  onto their orthogonal  equivalents to obtain the 
orthogonal  domain  metric  values  used in the computation  of relative 
complexity.  Finally, the eigenvalues  for the four  domains are presented 
in the last  row  of this table. 

Table 3, then contains  all  of the essential  information  needed to 
obtain baselined  relative  complexity  values  for  any version of any 



module relative to the baseline  build. As an  aside,  it  is not necessary 
that the baseline build  be the initial  build. As a typical  system  pro- 
gresses through  hundreds  of  builds  in the course of  its  life,  it is well 
worth reestablishing a baseline closer  to the current  system. In any 
event, these baseline  data are saved  by the PCA-RCM tool for use in 
later computation  of  metric  values.  Whenever the tool  is  invoked  ref- 
erencing the baseline data  it  will  automatically  use these data  to trans- 
form the raw  metric  values  given  to  it. 

Table 3. Baseline  Transformation  Data 

VI 5.7 8.2 0.12 0.02 -0.11 0.06 



Metric  Domain  Domain  Domain  Domain 6~ 
1 4 3 2 

AveDept 

values 
1.082 1.882  5.457 6.832 Eigen- 

h 
-0.1 1 0.40 -0.06 0.07 4.4 

In relating the number  of  faults  inserted in an  increment to 
measures  of a module’s  structural  change,  we  had only a small  number 
of  observations  with  which to work.  Problem  reports  could  not be con- 
sistently traced  back to source code, and there were  numerous  modules 
for wbch UX-Metric  did not report  measurements. The net  result  was 
that of the over 100 faults  that  were  initially  identified, there were only 
35 observations in which a fault  could be associated  with a particular 
increment  of a module,  and  with  that  increment’s  measures  of code 
delta  and  code churn. 

For  each  of the 35 modules  for  which there was  viable  fault 
data, there were three data  points.  First,  we  had the number  of  injected 
faults for  that  module  that  were the direct  result  of changes that  had 
occurred on that  module  between the current  version that contained the 
faults and the previous  version  that  did  not.  Second, we had  code  delta 
values  for each of  these  modules  from the current  to the previous ver- 
sion. Finally, we had  code  churn  values  derived  from the code deltas. 

Linear  regression  models  were  computed  for code churn and 
code deltas  with code faults as the dependent  variable in both  cases. 
Both  models  were  built  without  constant  terms in that we surmise that 
if no changes  were  made  to a module,  then  no  new faults could be in- 
troduced. The results  of the regression  between  faults  and code deltas 
were not  at  all  surprising. The squared  multiple R for this model was 
0.001, about as close  to  zero as you  can  get.  This  result is directly at- 
tributable to the non-linearity  of the data.  Change comes in two fla- 
vors.  Change  may  increase the complexity  of a module. Change may 
decrease the complexity  of a model.  Faults, on the other hand, are not 
related to the direction  of the change  but to its intensity. Removing 
masses  of  code  from a module is just as  likely to introduce faults and 
adding code to it. 

Table 4. Regression  Analysis  of  Variance 



Source I Sum-of- I DF I Mean-Square I F-Ratio I P 
Squares 

Regression 0.00 62.996 33 1.879 1 33 1.879 
Residual 5.268 10.673 34  179.121 

Table 5. Regression  Model 

Effect I Coefficient I Std Error I t I P(2-Tail) 
Chum I 0.576 I 0.073 I 7.937 I 0.000 

Table 6.  Regression  Statistics 

N I Multiple R I Squared multiple R I Standard error of estimate 
35 I 0.806 0.649  2.296 

The regression  model  between  code  churn  and  faults is dra- 
matically  different. The regression  ANOVA  for this model are shown 
in Table 4. Whereas code deltas  do  not  show  a  linear  relationship with 
faults, code churn  certainly  does. The actual  regression  model is given 
in Table 5 .  In Table 6 the regressions  statistics  have  been  reported.  Of 
particular  interest is the Squared  Multiple  R  term.  This  has  a value of 
0.649. This means,  roughly,  that the regression  model  will  account  for 
more that  65%  of the variation in the faults  of the observed  modules 
based on the values  of code churn. 

Of course,  it  may be the case that  both the amount  of change 
and the direction in which the change  occurred  affect the number  of 
faults inserted  into the system. The linear regression  through the origin 
shown in Tables 7 ,  8, and  9  below  illustrates  this  particular  regression 
model.  Tables 5 and 8 contain  our  estimates  for the constant k relating 
the rate of  fault  insertion  to the measured  structural  change,  measured 
by code churn and code delta.  We see that the model  incorporating 
code delta, as well  as  code  churn,  performs  significantly  better than the 
model  incorporating code churn  alone,  as  measured  by  Squared Multi- 
ple R  and  Mean  Sum  of  Squares. 

Table 7. Regression  Analysis  of  Variance 

Source 

4.356  33  143.753 Residual 
0.00 42.153  183.623 2 367.247 Regression 

P F-Ratio Mean-Square DF Sum-of-Squares 



Table 8. Regression  Model 

Effect Coefficient 

0.00 2.849  0.071 0.201 Delta 
0.00 9.172  0.071  0.647 Chum 

P(2-Tail) t  Std  Error 

Table 9. Regression  Statistics 

N I Multiple R I Squared multiple R I Standard error of estimate 
35 I ,848 .719  2.08 

We  evaluated  the  predictive ability of the regression models 
by  performing  a  crossvalidation. We performed  a specific type of 
crossvalidation,  excluding one observation  at  a time and  examining the 
prediction made  with the remaining  observations.  For our set  of 35 
observations, 35 different  predictions  were  made for each regression 
model.  Tables  10  and 11 summarize the crossvalidation  results for the 
two linear  regression  models  through the origin,  which are specified in 
Tables 4 - 9. For  each  of these models,  Tables 10 and 11 show statis- 
tics for: 

Predicted  squared  residuals.  For  each  observation,  a  regression 
model is formed  that  excludes  that  observation. The resulting 
model  then  uses the value  of the excluded  observation to predict 
the number  of  faults  inserted.  This  prediction is then subtracted 
from the number  of  faults  actually  observed  for the excluded ob- 
servation.  This  residual is then squared,  thereby  forming the pre- 
dicted  squared  residual. 

Ratio of  predicted  number  of  faults to observed  number of faults, 
where  predictions are made  for  excluded  observations.  For each 
excluded  observation,  a  prediction is made  as  described  above. 
The ratio  of the prediction  made  using  each  excluded  observation 
to the actual  number  of  faults is then  formed. 

Table 10.  Predicted  Squared  Residuals  for  Linear  Regressions 



I Model I Mean I Vari- I Mini I Maxi- I 25‘“ I 50”’ I 75“‘ I 
ance %tile %tile %tile mum mum 

dJ.J ‘=b,v’’’ 3.840 1.000 0.752 51.02  0.003  124.91 5.43 

dl.J*t=blv’~’ 3.876 1.479 0.799 36.27  0.03  69.66 4.68 

+b2A’” 

Table 1 1. Ratio of Predicted  Faults  to  Observed  Faults  for Lin- 
ear  Regressions 

Model 

d””’ = 61 V’ 

75”’ 50‘” 25‘” Maxi Mini Vari- Mean 
ance %tile %tile  %tile mum mnm 

0.899 1.136 0.508  8.64E-2  5.03 0.00 1.334 

d”J“=blv’.’ 1.447 0.463  6.69E-2  4.03 0.00 1.164 0.911 

+b2Ai’ 

Figure 1 - Histograms of Predicted  Squared  Residuals  for  Excluded 
Observations 



Predicted Squared Residuals 

Figures 1 and 2 are histograms that present  additional  informa- 
tion to that  given in Tables  10  and l l. Looking  at Table 10, we see that 
the regression  model  that  includes  both  code  delta  and code churn has 
the lowest  values for mean  predicted  squared  residual  and  variance  of 
the predicted  squared  residual. Ths  is also  shown in Figure 1. In ad- 
dition,  Table 10 shows  that the two parameter  model  that  includes  both 
code churn and code delta  has a slightly  smaller  difference  between the 
points  at the 25th and 75th percentiles. 

Figure 2 - Histograms of Ratio  of  Predicted to Observed  Number  of 
Faults  for  Excluded  Observations 

Code Chlm 

Code Delta 
and Code 
Chum 
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Ratio o f  Predicted  to  Observed  Number of  Faults 

Table 1  1 shows  that the mean  value  of the predictions  made by the 
model  which  includes  both  code  delta  and  code  churn  comes closer to 
predicting the number  of faults observed. Table 11 also shows that the 
model  which  includes  only  code  churn  and code delta  has the lowest 
variance for this ratio of  predicted  to  actual  values.  This can be seen in 
Figure 2, which  shows  that the regressions  depending  only code churn 
has  a  higher  variability  for this ratio than the regression  which includes 
both code delta  and code churn.  However, the range  between the 
points at the 25th  and 75'h percentiles is the highest for the two  parame- 
ter model. 

Table 12  shows the results  of the Wilcoxon  Signed  Ranks test, as 
applied to the predictions  for the excluded  observations  and the number 
of faults observed  for each of the regression  models.  We  see  that  about 
2/3 of the estimates  tend  to be less  than the number  of  faults observed. 

We  can  also  plot the predicted  residuals  against the actual  number  of 
observed faults for  each  of the four  linear  regression  models. These 
plots are shown in Figures 3 and 4. 

Table 12.  Wilcoxon  Signed  Ranks  Test  for  Linear  Regressions  Through 
the Origin 



Statistic 
Ranks Signifi- 

Observed 

Ties Churn Only 
+ Ranks Faults; 
- Ranks 

Total 
Observed - Ranks 
Faults; + Ranks 
Churn and Ties 
Delta Total 

a. Observed  Faults > Regression  model  predictions 
b.  Observed  Faults < Regression  model  predictions 
c. Observed  Faults = Regression  model  predictions 
d.  Based on positive ranks 

- 

cance 
(2-tailed) 

25"  17.52 

35 
0' 

224.00 20.36 1 I b  
.I36 -1.491"  406.00 16.92  24" 

35 
OC 

192.00 19.20 lob 
.044 -2.015"  438.00 

Figure 3 - Predicted  Residuals  vs.  Number of Observed  Faults  for  Lin- 
ear  Regression  with  Churn 

Faults = b l * C h u r n  

Number o f  observed  faults - versions 2.0, 2 . l a ,  and 2 . l b  

The results  of the Wilcoxon  signed  ranks  tests,  as  well  as  Figures 3 
and 4, indicate  that the predictive  accuracy  of the regression models 
might be improved  if  syntactic  analyzers  capable  of  measuring addi- 
tional  aspects  of  a  software system's structure  were  available. 



Figure 4 - Predicted  Residuals  vs.  Number  of  Observed  Faults  for  Lin- 
ear  Regression  with Chum and  Delta 

Faults = bl*Churn + b2*Delta 
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Number of observed  faults - vers~ons  2.0. 2 . la ,  and 2 . l b  

Finally,  we  investigated  whether the linear  regression  model  which 
uses code churn alone is an adequate  predictor  at a particular signifi- 
cance level  when  compared  to the model  using  both  code  churn  and 
code delta.  We  used the R2-adequate  test [8, 161 to  examine the linear 
regression  models  through the origin  and  determine  whether the model 
that  depends  only on code  churn is an  adequate  predictor. A subset  of 
predictor  variables is said  to be R2-adequate at  significance  level a if: 

R:,,, > 1 - (1 - R;,,K~ + d n , J ,  where 
0 R2sub is the R2 value  for the subset  of  predictors 
0 R2hn is the R2  value  for the full  set  of  predictors 

dn,k = (kFk,n-k-l)/n-k- 1, where 
k = number  of  predictor  variables in the  model 
n = number  of  observations 
F = F statistic for  significance a for  n,k  degrees  of  freedom. 

Table 13 shows  values  of R2, k, degrees  of  freedom, Fk,n.k.l,  dn,k, and 
R2sub for both linear models  through the origin. The number  of  obser- 
vations,  n, is 35,  and  we  specify a=.05. 

Table 13. Values  of R2, DOF,  k,  Fk,n-k-l,  and dn,k for R2-adequate  Test 



Linear Regressions 
significance a significance a Through Origin 
Threshold for d(n,k) Fk,"-k-l for k DF RL 

Churn only 
0.661  0.206  3.295  2  33 0.719 Chum, Delta 

0.125  4.139 I 34 0.649 ""_ 

Table 13  shows  that the value  of  Multiple  Squared R for the 
regression  using  only  code churn is 0.649. The 5% significance thresh- 
old for the code chum and  code  delta  model is 0.661. This  means that 
the regression  model  using  only  code  churn is not R2 adequate  when 
compared  to the model  using  both  code  churn  and code delta. Al- 
though the amount  of  change  occurring  between  subsequent revisions 
appears to be the primary  factor  determining the number  of faults in- 
serted; the direction  of  that  change  also  appears  to  be a significant fac- 
tor. 

8 Testing  Objectives 

Deterministically testing a large software  system is virtually 
impossible.  Trivial  systems, on the order  of 20 or 30 modules, often 
have far too many  possible  execution  paths  for  complete deterministic 
testing. This  being the case, we must  revisit  what  we hope to accom- 
plish by testing the system. Is our  goal  to  remove  all  of the faults 
within the code?  If this is our  goal,  how  do we know  when  we  have 
them  all?  What is it  worth, in terms  of  expense, to try to find one more 
fault?  Given  unlimited time and  resources,  identification and removal 
of  all faults might be a noble  goal,  but  real  world  constraints  make this 
largely  unattainable. The problem is that we must provide an adequate 
level  of  reliability in light  of the fact  that we cannot find and  remove all 
of the faults. Through the use  of  software  measurement, we hope to 
identify  which  modules  contain the most  faults  and,  based on execution 
profiles  of the system,  how these potential  faults can impact software 
reliability. The idea is that a fault  that  never  executes,  never  causes a 
failure.  However, a fault  that  lies  along the path  of  normal  execution 
will cause frequent  failures. The majority of the testing effort  should 
be spent finding those faults  that are most  likely  to cause failure. 

The first  step  towards  this  testing  paradigm is the identification 
of those modules  that are likely  to  contain the most faults. The objec- 



tives of the software  test  process are not  clearly  specified  and  some- 
times not clearly understood. An implicit  objective  of  a  deterministic 
approach to testing is to design  a  systematic  and  deterministic test pro- 
cedure that  will  guarantee  sufficient  test  exposure  for the random faults 
distributed throughout  a  program.  By  insuring,  for  example, that all 
possible paths  have  been  executed,  then  any  potential faults on these 
paths will  have  had the opportunity  to  have  been  expressed. 

We  must,  however,  come to accept the fact  that  some faults 
will  always  be  present  in the code.  We  will  not  be  able  to eliminate 
them all. The objective  of the testing  process  should  be  to find those 
faults that  will  have the greatest  impact  on the safety/survivability  of 
the code.  Under this view  of the software testing process, the act  of 
testing may be thought  of as conducting an experiment on the behavior 
of the code under  typical  execution  conditions.  We  will  determine,  a 
priori, exactly  what  we  wish  to  learn  about the code in the test  process 
and conduct the experiment  until  this  stopping  condition  has  been 
reached. 

To know the loci  of  probable  faults in a  complex  software  system 
is not  a  sufficient  condition  for  reliability  modeling.  A  software  system 
may be  viewed as a  set of program  modules  that are executing  a  set  of 
mutually  exclusive  functions.  If the system  executes  a  fimctionality 
expressed  by  a  subset  of  modules  that are fault  free,  it  will  never fail. 
If, on the other hand, the system  is  executing  a  functionality  expressed 
in a  subset of fault  laden  modules, there is  a  very  high  probability  that  it 
will fail. Thus, failure probability is dependent  upon the input  data  sets 
which drive the system  into  regions  of code (i.e., functionalities)  of  dif- 
fering complexities  (i.e.,  fault  proneness). 

Each  software  test  suite  implements  a  subset  of  functionalities. 
As each test is run  to  completion  it  generates  a test execution profile 
which represents the results  of the execution  of one or  more  functions. 
When  a  program  begins the execution  of  a  particular  functionality we 
can describe this beginning as the start  of  a  stochastic  process.  For the 
system, S, there is a  call tree that  shows the transition  of  program con- 
trol from one program  module to another.  This  transition  can be mod- 
eled as a  stochastic  process,  where  we  define an indexed  collection  of 
random  variables { X , ]  , where the index t runs  through  a  set  of  non- 
negative integers, t = 0,1,2,... representing the epochs of the process. 
At any particular  epoch the software  is  found to be executing  exactly 



one of its M modules.  The  fact  of the execution  occurring  in  a  particu- 
lar module  is  a state of the system.  For  a  given  software  system,  it  may 
be  found in exactly  one  of  a  finite  number  of  mutually  exclusive and 
exhaustive  states, 1,2,...M . In this representation  of the system, there 
is a stochastic process { X , }  , where the random  variables are observed 
at  epochs t = 0,1,2,.-. and  where each random  variable  may take on any 
one  of the M integers,  from the state space A = 1,2,..-M . 

The probability  that  a  particular  module  may  execute is a condi- 
tional probability. Let Y be  a  random  variable  defined on the indices  of 
the set  of  elements  of F. Then p!k’ = Pr[X, = iI Y = k ]  where 
k = 42,. . . ,#{F} represents the execution profile for  a  set  of  modules 
expressing  function k exclusively. The distribution  of the execution 
profile is multinomial  for  a  software  system  consisting  of  more than 
two modules. In other  words,  for  each  functionality, J ; ,  there is an 
execution  profile  represented  by the probabilities p,“’ , pf’  , p y ) ,  , p ,  . ( 0  

10 Test Efficiency 

The test  process  for  evolving  software  systems takes on  a dif- 
ferent  measurement  aspect  than  that  of  new  systems.  Existing  systems 
are continually  being  modified as a  normal  part  of the software mainte- 
nance activity. Changes  will be introduced  into  this  system  based on 
the need for corrections,  adaptations  to  changing  requirements,  and en- 
hancements  to  make the system  perform fastedbetter. The precise ef- 
fects  of  changes  to  software  modules in terms  of  number  of  latent faults 
is now  reasonably  well  understood.  From  a  statistical testing perspec- 
tive, test  effort  should be focused on those modules that are most likely 
to contain  faults.  Each  program  module  that  has  been  modified,  then, 
should be tested in proportion to the number  of  anticipated faults that 
might  have  been  introduced  into it. 

Each  program  module is usually  closely  linked to a specific 
functionality.  That  is,  as  we  exercise  a  particular  functionality  a dis- 
tinct  execution  profile  emerges  for  that  functionality.  For each func- 
tionality, some  modules  have  a  high  probability  of  being  executed, 
while  others  have  a  low  probability.  Each  test  suite  will  express one or 
more  of these functionalities. The execution  profiles  generated  from 



each test  may  be  characterized  by the probability distribution 
P = ( p i  11 I i I n)  for the kth test. 

In the face of the evolving  nature  of the software  system, the 
impact  of a single test  may  change  from  one  build  to the next.  Each 
program  module  has a relative  complexity  value.  This  relative  com- 
plexity is a fault  surrogate.  That is, the larger  value  of the relative 
complexity the greater fault  potential  that a module  has.  If a given 
module has a large fault  potential,  but  limited  exposure ( small profile 
value) then thefunctional cornpiexi@ of  that  module is also  small.  Our 
objective during the test  phase is to maximize our exposure to the faults 
in the system.  Another  way  to  say this is that we wish  to  maximize 
functional  complexity, I$ , given  by 

j=l 

where pi  is the relative  complexity  of the j t h  module on the i th system 

build  and p:k' is the test  profile  of the kth test suite. 
The initial phase  of the efficient  testing  of  changed code is to 

identify the functionalities  that  will  exercise the modules that have 
changed. Each  of these functionalities so designated  will  have an asso- 
ciated test suite designed  to  exercise  that  fbnctionality.  With this in- 
formation it is now  possible  to  describe the efficiency  of a test  from a 
mathematical/statistical perspective. A regression  test is one specifi- 
cally tailored to exercise the functionalities  that  will cause the changed 
modules  to  be  executed. A regression  test  will be efficient  if  it  does a 
good job of  exercising  changed  code.  It  is  worth  noting,  however, that 
a regression  test  that is efficient on one  build  may be inefficient on a 
subsequent  build. The efficiency  of a regression test, then, is given 
the following  formula. 

a=l 

where m represents the cardinality  of { M ,  u M i }  as defined  earlier. 

by 

In 
this case, z , is simply the expected  value  for  code  churn  under the pro- 
file p c k ) .  

This concept  of  test  efficiency  permits the numerical  evaluation 
of a test on  the actual  changes  that  have  been  made  to the software 



system.  It is simply the expected  value  of the fault  exposure  from  one 
release to another  under a particular test. If the value  of z is large for a 
given  test then the test  will  have  exercised the changed  modules. If the 
set  of z ' s  for a given  release  is  low  then  it is reasonable to suppose 
that the changed  modules  have  not  been  tested in proportion  to the 
number  of  probable faults that  were  introduced  during the maintenance 
changes. 

For  practical  purposes,  we  need  to  know  something  about the 
upper bound  on  test  efficiency.  That  is, if we were to execute the best 
possible test, what then would be the value  of  test  efficiency. A best 
regression  test is one  that  will  spend the majority  of its time in the 
modules  that  have  changed the most  from  one  build  to the next.  Let, 

This is the total  code  churn  between the i and j builds. To exercise 
each module in proportion  to the change  that  has  occurred  in the mod- 
ule during its  current  revision, we will  compute this proportion as fol- 
lows: 

4 ,  = x ,  / x *  
This  computation  will  yield a new  hypothetical  profile  called the best 
profile. That  is,  if  all  modules  were  executed  in  proportion  to the 
amount  of  change  that  they  had  received  we  would  then  theoretically 
have  maximized  our  exposure  to  software faults that may have been 
introduced. 

Finally,  we  seek  to  develop a measure  that  will relate well to 
the difference  between the actual  profile  that is generated by a test and 
the best  profile.  To this end,  consider the following term, / p i  - qil . 
This is the absolute  value  between the best  profile  and the actual  pro- 
file. This  value  has a maximum  value  of 1 and a minimum  of 0. The 
minimum  value  will be achieved  when the module  best  and actual cov- 
erage are identical. A measure  of the total  coverage for a set  of  mod- 
ules (task or program) is then, 

G I  

This coverage  value  has a maximum  value  of 10 when the best  and the 
actual  profiles are identical  and 0 when there is a complete mismatch of 
profiles. 



11 Regression  Test  Results 

The following  discussion  documents the results of the execution 
of 36 instrumented  tasks  on  two  sequential  builds of a large  embedded 
software system. The perspective  of  this  discussion is strictly  from the 
standpoint  of  regression  testing.  That is, certain  program  modules  have 
changed  across the two  sequential  builds.  The  degree  of this change is 
measured  by code churn. As has  been  clearly  demonstrated on the Cas- 
sini spacecraft  project, the greater the change in a program  module, the 
greater the likelihood  that  faults  will  have  been  introduced  into the code 
by the change.  Each  of the regression  tests,  then,  should  attempt  to ex- 
ercise these changed  modules  in  proportion to the degree of change. If 
a changed  module  were to receive little or no  activity  during the test 
process, then we  must  assume  that the latent  faults  in the module  will 
be expressed  when the software  is  placed  into  service. 

All  of the tasks in system  were  instrumented  with  our Clic 1.0 
tool. This tool  would  permit us to  count the frequency  of  execution  of 
each module  in each of the instrumented  tasks  and  thus  obtain the exe- 
cution profiles for these tasks  for  each  of the tests. The execution  pro- 
files show the distribution of activity in each  module of the instru- 
mented tasks. For each of the modules, the code churn measure  was 
computed. The code churn values  for  each  modules  reflected the de- 
gree of change of the modules  during the most  recent  sequence  of 
builds. The cumulative  churn  values  for  all  tasks are shown in the sec- 
ond  column  of Table 14. 

A churn value  of  zero  indicates  that the module in question re- 
ceived  no  changes  during the last  build  sequence. A large churn value 
(>30) indicates  that the module in question  received substantial 
changes. 

For the subsequent  analysis, two profile  values  for  each  test  will 
be compared. The actualprofile is the actual  execution  profile for each 
test. The best  profile is the best  hypothetical  execution profile given 
that each module  would be tested  directly  in  proportion  to its chum 
value.  That  is, a module  whose churn value  was  zero  would receive 
little or  no  activity  during the regression  test  process. 

Table 14. Test  Summary  by  Task 



From  Table 14 we  can  seen  that the A  and B tasks have  received 
the greatest  change  activity.  Associated  with  each task entry in this 
table is the Best  Profile  and the Actual  Profile  for the task across all 
tests. The last  row in the table gives the total  values  for code churn for 
all tasks. The  last  two  columns  of  this table contain the expected value 
for the code churn  of the task  under the best  profile  and also under the 
actual  profile.  These  columns are labeled  Best  Coverage  and  Actual 
Coverage. The total  expected  value  for code churn under the best  pro- 
file is 13 1 1. The total  expected  value for code churn  under the actual 



profile is 89. The  tests  spent  a  disproportionate  amount of time in 
modules that had  not  changed  during this build  interval. The ratio of 
Total Actual  Coverage to Total  Best  Coverage  will  yield  a  percent  cov- 
erage index  for the task,  for the system, or for the test  depending on the 
granularity of the summary. 

The change coverage  index  was  computed  by  module for each 
task and then for the total  system. In Figure 5 ,  these coverage  data are 
presented for the total  system  and  Tasks  A, B, D, and E. For this fig- 
ure, the values  have  been  scaled  onto the interval  from 0 to 10. Had 
there been  perfect  best  coverage, the total value  would  have  been 10. 
The coverage  values  for the A  and B tasks  were the best  out  of all 
tasks. The E and D tasks,  while  having  relatively  high code churn Val- 
ues, did not fare so well. The test  coverage  of the D task  was  typical  of 
the total system,  shown as the rightmost  entry  in this figure. 

Figure 5 - Change  Coverage  Index 
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We  would  now like to look  within  a  task to see why the A  and  B 
tasks showed  better  coverage  than  other  tasks. The difference  between 
the best profile and the actual  profile is shown in Figure 6. Here,  if the 
line is negative, this means  that the module  in  question  was  exercised 
well out of proportion  to the possible  faults  that  it  contained. On the 
other hand  if the line is positive,  then the module in question  was  not 



exercised in proportion  to the faults  that  it  might  contain. A perfect 
line on this chart  would  be  perfectly  straight  at  zero on the profile axis. 

A similar  graph  is  shown in Figure 7 for Task  B.  Here we can 
see that  almost all test  activity  was  on three distinct  program  modules 
(the negative  values). The code  that  was  changed  was  not  exercised  by 
this test to any large extent. 

Figure 6 - Difference  Between  Best  and  Actual  Profile  for  Task A 
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Table 15  summarizes the performance  of the best 24 of suite of 
115  instrumented tests. Only those tests whose  performance  index ex- 
ceeded  10%  of a theoretical total are shown  here. Again the perform- 
ance index  shown in this figure  was  computed  by forming the ratio of 
the actual  profile to the best  profile  for  that  test.  It  must be remem- 
bered  that  not all tests will  exercise  all  modules. The performance in- 
dex  is  computed  only  for those modules  whose  functionality  was in- 
cluded in the test. From a regression  test  perspective, we now  know 
that  we  have a testing problem.  None  of these tests do a really  good 
job in  executing the code  most  likely  to  contain the newly  introduced 
faults. 



Figure 7 - Difference  Between  Best  and  Actual  Profile for Task B 
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12 Summary 

There is a  distinct  and  a strong relationship  between software 
faults and  measurable  software  attributes.  This is in itself  not  a  new 
result or observation. The most  interesting  result  of this current  en- 
deavor is that we  also  found  a  strong  association  between the fault  in- 
sertion process over the evolutionary  history  of  a software system  and 
the degree of  change  that is taking  place in each  of the program  mod- 
ules. We also found  that the direction  of the change  had  an  effect on 
the number of faults inserted.  Some  changes  will  have the potential  of 
introducing very  few faults while  others  may  have  a  serious  impact on 
the number  of  latent  faults.  Different  numbers  of faults may be in- 
serted, depending  upon  whether code is being  added to or removed 
from the system. 

In order for the measurement  process to be  meaningful, the 
fault data must  be  very  carefully  collected.  In this study, the data were 
extracted  ex  post  facto  as  a  very  labor  intensive effort. Since  fault data 
cannot be collected  with the same degree of  automation as much  of the 
data on software metrics  being  gathered  by  development  organizations, 
material  changes in the software  development  and  software  mainte- 
nance processes  must be made to capture  these  fault data. Among other 



things, a well  defined  fault  standard  and  fault  taxonomy  must be devel- 
oped and  maintained  as  part of the software  development  process. 
Further, all designers  and  coders  should be thoroughly  trained in its 
use. A viable  standard  is  one  that  may  be  used to classify any fault  un- 
ambiguously. A viable  fault  recording  process is one in which  any one 
person  will  classify a fault  exactly the same as any other person. 

Table 15. Individual  Test  Summaries 

Test # Percent 
Coverage 

28  20.6 
18 

18.2  14 
19.0 

12.2  158 
12.2  9 
12.9 39 
13.1 20 
13.2  156 
14.7  169 
14.8  49 
14.8 47 
16.9 12 

Test # Percent 
Coverage 

177 11.7 
31 

10.2  137 
10.6 33 
10.7 180 
10.8 38 
10.9 1 
11.3 159 
11.3 2 
11.4 59a 
11.5 167 
11.5 3 
11.6 

Finally, the whole  notion  of  measuring the fault  insertion  pro- 
cess is its ultimate  value  as a measure  of  software  process.  The soft- 
ware engineering  literature is replete with examples  of  how  sofiware 
process  improvement can be achieved  through the use of some new 
software development  technique.  What is almost  absent  from the same 
literature is a controlled  study to validate the fact  that the new process 
is meaningful. The techniques  developed  in this study  can be imple- 
mented in a development  organization to provide a consistent  method 
of  measuring  fault  content  and  structural  evolution across multiple 
projects  over time. The initial  estimates  of  fault  insertion  rates can 
serve as a baseline  against  which  future  projects can be compared to 
determine whether  progress  is  being  made in reducing the fault inser- 
tion rate,  and  to  identi@ those development  techniques  that  seem to 
provide the greatest  reduction. 



Software  test  is  not  an  intuitive  process.  Different  modules are 
changed  between  builds. A regression  test  that  was  satisfactory for one 
build  might  well be totally  inadequate  on a subsequent  build.  When a 
program is subjected to numerous  test  suites  to  exercise differing as- 
pects of its functionality, the test  risk  of a system  will  vary  greatly as a 
result  of the execution  of these different  test suites. Intuitively - and 
empirically - a program  that  spends a high  proportion  of  its time exe- 
cuting a module set  of  high  relative  complexity  will  be  more failure 
prone than one driven to executing  program  modules  with  low com- 
plexity values. Thus,  we  need  to  identify the characteristics  of  test sce- 
narios that cause our  criterion  measures  of x andz to be large. 

The importance  of this research is that  we can now  have a clearer 
understanding  of  how to quantify  and  evaluate the effectiveness  of the 
regression testing process.  For  this  study,  we  were  not  able to perform 
an analysis of  test  effectiveness  on the same  system for which we esti- 
mated the rate of  fault  insertion.  We are currently  working  with  NASA 
and commercial  software  development  efforts to apply  both types of 
analysis to the same project,  with the goal  of  improving  our ability to 
estimate the number  of faults remaining in the system  after the comple- 
tion of a test  sequence  and  allocate  them  among those portions of the 
system  that  have  changed  since the last  increment. 
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